УДК 536.244:533.601

аспирант Института энергетики и транспорта А.А. Загоскин студент 3 курса Института энергетики и транспорта Н.И. Корнилов Научные руководители – проф., д-р техн. наук С.В. Карпов проф., д-р техн. наук Э.Н. Сабуров САФУ имени М.В. Ломоносова, Россия

К вопросу о физическом и математическом моделировании аэродинамики циклонных устройств с внешней саморециркуляцией газов

Управление аэродинамикой циклонного потока в нагревательных печах, циклонных топках, сушилках и других устройствах с закрученным движением газов [1] осуществляется за счет изменения их основных безразмерных геометрических и режимных характеристик: суммарной площади входа потока $\overline{f}_{\rm Bx} = 4f_{\rm Bx}/(\pi D_{\rm K}^2)$, где $D_{\rm K}$ – внутренний диаметр циклонной камеры; диаметра выходного отверстия $\overline{d}_{\rm Bbix} = d_{\rm Bbix}/D_{\rm K}$; длины рабочего объема $\overline{L}_{\rm K} = L_{\rm K}/D_{\rm K}$; входного числа Рейнольдса ${\rm Re}_{\rm Bx} = {\rm v}_{\rm Bx}D_{\rm K}/{\rm v}_{\rm Bx}$, где ${\rm v}_{\rm Bx}$, ${\rm v}_{\rm Bx}$ – средние значения скорости и кинематического коэффициента вязкости газа во входных каналах), так и за счет организации внешней рециркуляции газов [2].

Циклонное течение характеризуется достаточно высокой кратностью внутренней рециркуляции газов. Дополнительное использование внешней рециркуляции греющего потока в нагревательных печах шахтного типа позволяет повысить равномерность нагрева изделий [2], однако это требует дополнительных затрат энергии для эжекции топливно-воздушных струй или применения специальных рециркуляционных вентиляторов.

Авторами [1, 3] было предложено использовать совершенно иной, новый принцип организации внешней рециркуляции газов, при котором транспортировка теплоносителя с боковой поверхности циклонной печи, где температура его наиболее высокая, в приосевую область осуществляется за счет перепада давления в пристенной и приосевой зонах циклонного потока – так называемого радиального градиента давления. Как известно [1, 3], этот перепад может достигать больших величин, что должно обеспечить достаточно высокую саморециркуляции газов. Преимуществом его является кратность внешней также возможность регулирования аэродинамики циклонного потока в широких пределах без изменения основных конструктивных параметров циклонной камеры.

Исследование аэродинамики циклонного рециркуляционного устройства было выполнено на металлической модели горизонтальной циклонной камеры

внутренним диаметром $D_{\kappa} = 201$ мм и длиной $L_{\kappa} = 316$ мм. Подвод воздуха осуществлялся тангенциально к внутренней поверхности камеры с двух диаметрально противоположных сторон через каналы с высотой $h_{\text{BX}} = 24$ мм и длиной (размер по образующей) $l_{\text{BX}} = 25,7$ мм. Безразмерная суммарная площадь входа потока \overline{f}_{BX} равнялась $3,9 \cdot 10^{-2}$. Отвод воздуха из циклонной камеры производился через пережим выходного торца, безразмерный диаметр которого $\overline{d}_{\text{Bbix}}$ мог принимать значения от 0,3 до 0,4.

Рис.1. Исследованные схемы организации внешней саморециркуляции газов

поверхности рабочего объема камеры через радиальные патрубки внутренним диаметром $d_{peq}=27$ мм. Суммарная безразмерная площадь рециркуляционных каналов при этом могла принимать значения от 0 (рециркуляция отсутствует) до 0,072. Ввод рециркулируемого газа осуществляли в приосевую область циклонного устройства со стороны глухого торца через цилиндрическую камеру смешения внутренним диаметром $d_{cm} = 54$ мм. В некоторых опытах для предварительной закрутки рециркуляционного потока использовали лопастной закручиватель, устанавливаемый на выходе из камеры смешения.

Исследованные в работе варианты внешней саморециркуляции газов в циклонной камере показаны на рис.1, а распределения в рабочем объеме безразмерных (отнесенных к v_{Bx}) тангенциальной \overline{w}_{φ} и аксиальной \overline{w}_z скоростей – на рис.2. Как видно из представленных данных, перепуск части газов из периферийной в приосевую зону, не вызывая коренных изменений в пристенной области, существенно изменяет картину течения в области ядра потока. Так уровень крутки потока, характеризуемый величиной безразмерной

Рис.2.Радиальные распределения безразмерных тангенциальной и аксиальной скоростей при различных вариантах организации рециркуляции газов ($\overline{d}_{\text{вых}} = 0,3$)

максимальной тангенциальной скорости $\overline{w}_{\phi m}$, с увеличением \overline{f}_{peq} снижается, и при $\overline{f}_{peq} = 0,072$ это падение составляет 240% при полном подавлении осевого обратного течения (рис.2) и, как следствие, исключении подсоса охлажденных газов в камеру.

Закон изменения $\overline{w}_{\phi m}$, отнесенной к ее значению в камере без рециркуляции $\overline{w}_{\phi m}^{-0}$, от суммарной площади рециркуляционных каналов (рис.3) удовлетворительно описывается квадратичной зависимостью

$$k_{\text{peq}} = 1 - 12\overline{f}_{\text{peq}} + 52\overline{f}_{\text{peq}}^2 \tag{1}$$

Качественно аналогичный характер имеет и зависимость относительного изменения суммарного коэффициента сопротивления $\zeta_{\rm BX} = 2\Delta p_{\rm II}/(\rho_{\rm BX} {v_{\rm BX}}^2) (\Delta p_{\rm II} -$ перепад полного давления в циклоне; $\rho_{\rm BX}$ – плотность воздуха во входных каналах).

Аэродинамическая эффективность циклонных устройств характеризуется величиной коэффициента аэродинамического сопротивления:

Рис.3. Влияние безразмерной суммарной площади рециркуляционных каналов на w_{om} : точки – экспериментальные данные

где $\rho_{\phi m}$ – плотность воздуха на радиусе расположения $w_{\phi m}$. Чем меньше величина $\zeta_{\phi m}$, тем ниже затраты энергии на создание и поддержание максимального уровня w_{ϕ} в объеме циклонной камеры. Как видно из рис.3, относительный коэффициент аэродинамической эффективности $\overline{\zeta}_m$ сравнительно мало изменяется и имеет минимальные значения в диапазоне \overline{f}_{peu} от 0,01 до 0,03. Поэтому оптимальным из представленных на рис.1 схем с точки зрения способа организации саморециркуляции следует рассматривать вариант 2.

Задачами дальнейших экспериментальных исследований являются изучение связи безразмерных параметров циклонного потока с расходными характеристиками системы рециркуляции, ее энерготехнологическая оптимизация, изучение особенностей конвективного теплообмена в циклонной печи с внешней саморециркуляцией греющего потока, разработка рекомендаций по расчету и проектированию рециркуляционных устройств.

Для детального изучения влияния геометрических и режимных параметров циклонного устройства с внешней саморециркуляцией на поля

скоростей и давлений было проведено численное моделирование течения методом конечных объемов на упрощенной модели без рециркуляционного канала. Моделирование проводилось на открытой платформе OpenFOAM в виртуальном облачном сервере с процессором 16х2,66 ГГц.

Для моделирования закрученного потока в циклонных устройствах в работах [6, 8, 9] рекомендуется использовать модели турбулентности Reynolds Stress Model (RSM), в работах [8,9] - методы Large eddy simulation и Detached eddy simulation.

Модели турбулентности семейства RSM, $k - \varepsilon$, $k - \omega$ (обзор существующих моделей выполнен в [4]) и другие двухпараметрические модели основаны на осредненных по Рейнольдсу уравнениях Навье-Стокса:

$$\begin{cases} \frac{\partial U_i}{\partial x_i} = 0\\ \frac{\partial U_i}{\partial t} + \frac{\partial (U_i U_j)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(v \frac{\partial U_i}{\partial x_j} - \overline{u_i' u_j'} \right), \end{cases}$$
(1)

где U_i - осредненная во времени составляющая скорости; $\overline{u_i}$ - пульсационная составляющая скорости; P – давление; i=1,2,3; j=1,2,3; k=1,2,3 – индексы осей декартовой системы координат.

Тензор Рейнольдсовых напряжений в двухпараметрических моделях, таких, как $k - \varepsilon$ и $k - \omega$, по гипотезе Буссинеска заменяется турбулентной вязкостью v_t :

$$-\overline{u_i'u_j'} = v_t \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j}\right) - \frac{2}{3}\delta_{ij}k$$
(2)

и в зависимости от применяемой модели турбулентности *v_t* моделируется для замыкания системы.

Применение гипотезы Буссинеска допустимо только в том случае, когда на поток влияет только одна компонента тензора Рейнольдсовых напряжений [4]. Закрученный поток в циклонном устройстве обладает анизотропной турбулентностью, о чем говорится в работах [6, 8, 9, 11, 12] (в работе [11] анизотропность турбулентности доказана экспериментально с помощью ЛДА), из-за чего применение моделей $k - \varepsilon$ и $k - \omega$ может снизить точность расчета. Для увеличения точности расчета необходимо замыкать систему уравнений (1) напрямую, моделируя компоненты тензора Рейнольдсовых напряжений, что реализовано в семействе моделей турбулентности RSM. В общем виде уравнение для нахождения Рейнольдсовых напряжений выглядит следующим

образом:

$$\frac{\partial}{\partial t} \left(\rho \overline{u_i' u_j'} \right) + \frac{\partial}{\partial x_j} \left(\rho U_j \overline{u_i' u_j'} \right) = \rho P_{ij} + \frac{\partial}{\partial x_k} D_{ijk} + \rho \Phi_{ij} - \rho \varepsilon_{ij} , \qquad (3)$$

где D_{ijk} -диффузионный член, обусловленный молекулярной диффузией и диффузией перемешивания посредством взаимодействия пульсаций скорости; Φ_{ijk} - член перераспределения, описывающий обмен энергией между отдельными составляющими $\overline{u_i'u_k'}$;

P_{ik} - член генерации турбулентности, характеризующий перенос энергии от осредненного течения к пульсационному;

ε_{ik} - диссипативный член, характеризующий перенос энергии крупномасштабных вихрей к диссипирующим вихрям.

Для решения системы (1) необходимо в уравнении (3) промоделировать диффузионный, диссипативный и перераспределительный члены. Для данной задачи наиболее распространены следующие модели турбулентности: Лаундера-Гибсона, Лаундера-Риса-Роди, SSG. В данной работе для расчета использовалась модель Лаундера-Гибсона.

Наряду с выбором модели турбулентности, большое влияние на точность расчета оказывают следующие параметры моделирования: 1) алгоритм решения; 2) тип и измельченность расчетной сетки; 3) численные схемы для дискретизации дифференциальных уравнений.

При использовании в данной работе алгоритма для стационарного турбулентного потока SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) отсутствовала сходимость решения, профиль скорости в течение расчета непрерывно перестраивался, из-за чего окончательный результат не был получен. Аналогичный результат наблюдался в работе [10] и может быть объяснен нестационарностью течения в циклонном устройстве. Поэтому в дальнейшей работе применялись алгоритмы PISO (Pressure Implicit with Splitting of Operators) и PIMPLE (PISO-SIMPLE) предназначенные для нестационарного течения. Алгоритм PIMPLE является предпочтительным при малом размере ячеек, т.к. позволяет значительно уменьшить продолжительность расчета по сравнению с алгоритмом PISO.

В данной работе исследовались три типа расчетных сеток:

1) неструктурированная тетраэдральная, созданная с помощью программы Netgen;

2) неструктурированная гексаэдральная, созданная с помощью программы snappyHexMesh;

3) структурированная гексаэдральная, созданная с помощью программы Salome.

Модели турбулентности RSM очень чувствительны к качеству расчетной сетки [4] (которое характеризуется коэффициентом скошенности и отношением сторон ячейки), из-за чего при использовании неструктурированных расчетных сеток наблюдалась нестабильность расчета, и моделирование аварийно прекращалось. Дальнейшее исследование проводилось на структурированной гексаэдральной расчетной сетке. Для улучшения качества расчетной сетки из геометрии были исключены входные каналы, т.к. при стандартном исполнении входного канала в месте примыкания к наружной поверхности циклонной ка-

Рис.4. Стандартное исполнение примыкания входного канала к рабочему объему циклона

Рис.5. Расчетная геометрическая модель циклонной камеры

меры (рис.4) образовывались ячейки с большим отношением сторон, что влияло на стабильность расчета. Входная скорость в канале задавалась профилем, который был получен в работе [5]. Геометрическая модель циклонной камеры, основные размеры которой соответствовали размерам экспериментальной установки, показана на рис.5. Граничные условия для расчета сведены в табл. 1.

Параметр	Входные каналы	Выходной канал	Стенки устройства
Скорость, v, м/с	профиль	grad(v)=0	0
Давление, Р, Па	grad(P)=0	0	grad(P)=0
Кинетическая энергия турбулентности, <i>k</i> , <i>м²/c²</i>	2,2867	grad(k)=0	пристенная функция
Скорость	1228,84	$grad(\varepsilon)=0$	пристенная функция

Табл. 1. Используемые граничные условия

диссипации турбулентности, ε , m^2/c^3			
Тензор напряжений Рейнольдса, <i>R</i> , <i>м²/c²</i>	(3,43 0 0 3,43 0 3,43)	grad(R) = 0	пристенная функция

Для определения наиболее оптимального способа численной дискретизации дифференциальных уравнений были проведены 10 опытов при различных комбинациях численных схем, которые сведены в табл. 2.

Табл.2. Рассмотренные способы численной дискретизации дифференциальных уравнений

п/п	Обозна- чение	Схема дискрети- зации градиента скорости	Схема дискретизации дивергенции скорости	Схема дискретизации дивергенции k и <i>є</i>
1	+	cellMDLimited	linearUpwind grad(U)	linearUpwind grad(ε ;k)
2	\diamond	faceMDLimted	linearUpwind grad(U)	linearUpwind grad(U)
3	*	fourth	linearUpwind grad(U)	linearUpwind grad(U)
4	0	leastSquares	linearUpwind grad(U)	linearUpwind grad(U)
5		fourth	linearUpwind grad(U)	linearUpwind grad(ε ; k)
6	Δ	cellLimited	limitedLinear 1	upwind
7		cellLimited	limitedLinear 0,1	upwind
8	×	cellLimited	limitedLinear 0,1	limitedLinear 0,1
9	•	fourth	linearUpwind grad(U)	upwind
10		cellLimited	limitedLinear 1	limitedLinear 1

Рис. 6. Профили тангенциальной скорости при различных способах численной дискретизации

После выбора наиболее оптимального способа численной дискретизации выполнено моделирование на расчетной сетке с различным количеством ячеек. Были проведены три расчетных исследования с 1 млн. ячеек, 500 тыс. ячеек и 287 тыс. ячеек. Для наиболее мелкой сетки получены значения \overline{w}_{φ} , хорошо согласующиеся с экспериментальными данными (рис.4): так расхождение по значениям максимума тангенциальной скорости $\overline{w}_{\varphi m}$ и его радиального расположения ($\overline{r}_{\varphi m}$) не превышает 3%.

Рис.7. Сравнение экспериментальных (точки) и расчетных (линии) профилей безразмерной тангенциальной скорости

По результатам выполненной работы можно сделать выводы:

1.

2. Использование модели турбулентности Лаундера-Гибсона, гексаэдральной структурированной расчетной сетки, схемы четвертого порядка точности и ограниченной противоточной схемы можно добиться достаточно хорошей точности расчетов при моделировании закрученного потока в циклонном устройстве.

Список литературы

 Сабуров, Э.Н. Теория и практика циклонных сепараторов, топок и печей /Э.Н. Сабуров, С.В. Карпов; под ред. Э.Н. Сабурова.- Архангельск: Изд-во АГТУ, 2000. - 568 с.

- 2. Пуговкин, А.У. Рециркуляционные пламенные печи.–Л: Машиностроение, 1987. 158 с.
- 3. Карпов, С.В. Высокоэффективные циклонные устройства для очистки и теплового использования газовых выбросов/С.В. Карпов, Э.Н. Сабуров; под ред. Э.Н. Сабурова.- Архангельск: Изд-во АГТУ, 2002. 504 с.
- 4. Белов, И.А. Моделирование турбулентных течений /И.А. Белов, С.А. Исаев. Балтийский государственный технический университет, 2001. 108 с.
- Карпов, С.В. Аэродинамика циклонных устройств при близких к предельным условиях ввода и вывода газов/ С.В. Карпов, Э.Н. Сабуров, А.В. Быков//Труды Четвертой Национальной конференции по теплообмену: В 8 томах. Т.2. Вынужденная конвекция однофазной жидкости. – М.: Издательский дом МЭИ, 2006. – С.141-144.
- 6. Kaya, F. Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones / F. Kaya, I. Karagoz // Current science. 2008. P.1273-1278.
- Sentyabov, A.V. Investignation of turbulence models for computation of swirling flows / A.V. Sentyabov, A.A. Gavrilov, A.A. Dekterev // Thermophysics and aeromechanics – 2011. – №1 – P.73-85.
- Shalaby, H. Comparative study the continuous phase flow in a cyclone separator using different turbulence models / H. Shalaby, K. Pachler, K. Wozniak, G. Wozniak // International journal for numerical methods in fluids. – 2005. – P.1175-1197.
- Wang, B. Numerical study of gas-solid flow in a cyclone separator / B. Wang, D.L. Xu, G.X. Xiao, K.W. Chu, A.B.Yu // Third international conference on CFD in the Minerals and process Industries. 2003. P.371-377.
- 10. Karvinen, A. Comparison of turbulence models in case of three-dimensional diffuser/A. Karvinen, H. Ahlstedt // Proceedings of Open Source CFD International Conference. – 2008. – P.213-230.
- 11. Derksen, J. Confined and agitated swirling flows with applications in chemical engineering/ J. Derksen // Flow, turbulence and combustion 2002. P.3-33.
- 12. Schutz, S. Numerical simulation of the flow field and the separation behavior of hydrocyclones / S. Schutz, G. Gorbach, K. Kissling, M. Piesche // V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 – P.1-20.